Deep Domain Adaptation Based on Adversarial Network With Graph Regularization
نویسندگان
چکیده
منابع مشابه
Variational Recurrent Adversarial Deep Domain Adaptation
We study the problem of learning domain invariant representations for time series data while transferring the complex temporal latent dependencies between domains. Our model termed as Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) is built atop a variational recurrent neural network (VRNN) and trains adversarially to capture complex temporal relationships that are domain-invar...
متن کاملDomain Adaptation for Relation Extraction with Domain Adversarial Neural Network
Relations are expressed in many domains such as newswire, weblogs and phone conversations. Trained on a source domain, a relation extractor’s performance degrades when applied to target domains other than the source. A common yet labor-intensive method for domain adaptation is to construct a target-domainspecific labeled dataset for adapting the extractor. In response, we present an unsupervise...
متن کاملConditional Adversarial Domain Adaptation
Adversarial learning has been successfully embedded into deep networks to learn transferable features for domain adaptation, which reduce distribution discrepancy between the source and target domains and improve generalization performance. Prior domain adversarial adaptation methods could not align complex multimode distributions since the discriminative structures and inter-layer interactions...
متن کاملIncremental Adversarial Domain Adaptation
Continuous appearance shifts such as changes in weather and lighting conditions can impact the performance of deployed machine learning models. Unsupervised domain adaptation aims to address this challenge, though current approaches do not utilise the continuity of the occurring shifts. Many robotic applications exhibit these conditions and thus facilitate the potential to incrementally adapt a...
متن کاملMarginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation
Domain adaptation, which aims to learn domain-invariant features for sentiment classification, has received increasing attention. The underlying rationality of domain adaptation is that the involved domains share some common latent factors. Recently neural network based on Stacked Denoising Auto-Encoders (SDA) and its marginalized version (mSDA) have shown promising results on learning domain-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3035094